2 research outputs found

    Doppler compensation algorithms for DSP-based implementation of OFDM underwater acoustic communication systems

    Get PDF
    In recent years, orthogonal frequency division multiplexing (OFDM) has gained considerable attention in the development of underwater communication (UWC) systems for civilian and military applications. However, the wideband nature of the communication links necessitate robust algorithms to combat the consequences of severe channel conditions such as frequency selectivity, ambient noise, severe multipath and Doppler Effect due to velocity change between the transmitter and receiver. This velocity perturbation comprises two scenarios; the first induces constant time scale expansion/compression or zero acceleration during the transmitted packet time, and the second is time varying Doppler-shift. The latter is an increasingly important area in autonomous underwater vehicle (AUV) applications. The aim of this thesis is to design a low complexity OFDM-based receiver structure for underwater communication that tackles the inherent Doppler effect and is applicable for developing real-time systems on a digital signal processor (DSP). The proposed structure presents a paradigm in modem design from previous generations of single carrier receivers employing computationally expensive equalizers. The thesis demonstrates the issues related to designing a practical OFDM system, such as channel coding and peak-to-average power ratio (PAPR). In channel coding, the proposed algorithms employ convolutional bit-interleaved coded modulation with iterative decoding (BICM-ID) to obtain a higher degree of protection against power fading caused by the channel. A novel receiver structure that combines an adaptive Doppler-shift correction and BICM-ID for multi-carrier systems is presented. In addition, the selective mapping (SLM) technique has been utilized for PAPR. Due to their time varying and frequency selective channel nature, the proposed systems are investigated via both laboratory simulations and experiments conducted in the North Sea off the UK’s North East coast. The results of the study show that the proposed systems outperform block-based Doppler-shift compensation and are capable of tracking the Doppler-shift at acceleration up to 1m /s2.EThOS - Electronic Theses Online ServiceIraqi Government's Ministry of Higher Education and Scientific ResearchGBUnited Kingdo

    Underwater localization and node mobility estimation

    Get PDF
    In this paper, localizing a moving node in the context of underwater wireless sensor networks (UWSNs) is considered. Most existing algorithms have had designed to work with a static node in the networks. However, in practical case, the node is dynamic due to relative motion between the transmitter and receiver. The main idea is to record the time of arrival message (ToA) stamp and estimating the drift in the sampling frequency accordingly. It should be emphasized that, the channel conditions such as multipath and delay spread, and ambient noise is considered to make the system pragmatic. A joint prediction of the node mobility and speed are estimated based on the sampling frequency offset estimation. This sampling frequency offset drift is detected based on correlating an anticipated window in the orthogonal frequency division multiplexing (OFDM) of the received packet. The range and the distance of the mobile node is predicted from estimating the speed at the received packet and reused in the position estimation algorithm. The underwater acoustic channel is considered in this paper with 8 paths and maximum delay spread of 48 ms to simulate a pragmatic case. The performance is evaluated by adopting different nodes speeds in the simulation in two scenarios of expansion and compression. The results show that the proposed algorithm has a stable profile in the presence of severe channel conditions. Also, the result shows that the maximum speed that can be adopted in this algorithm is 9 km/h and the expansion case profile is more stable than the compression scenario. In addition, a comparison with a dynamic triangular algorithm (DTN) is presented in order to evaluate the proposed system
    corecore